
Automate Your Code

interfaceless
design

Case Study – Introduction

The company M&A Dieterle from Ottenbach develops and manufactures systems for the production

of carbon fiber tapes. Initially, the entire development of the functions took place on a test system.

Essentially, this involved an unwinder, a transport system, and a drive for the rewinder. A process

takes place in between. The top priority was to create a modular software structure to match the

modular hardware/machine setup.

Version 1.0 was created using traditional programming methods.

Once the basic functions were complete, a production system was planned and built based on the

knowledge gained from the test system. Due to the increased length, this system already included

two transport units, and a regulation mechanism was needed between them to maintain tape

tension.

As a result, the first customer orders for tape systems started coming in. However, due to different

process requirements, these systems had to be built differently than the “standard” production

system.

Production System:

Unwinder, Process 1, Transport, Process 2, Transport, Rewinder

Example 1:

Unwinder, Transport, Process 1, Transport, Process 2, Transport, Rewinder

Example 2:

2x Unwinder, Transport, Process, Rewinder

Example 3:

This system can operate in both a “Short” and “Long” version.

The main difference from the standard lies in the electrical setup. While the standard system

contains everything in a single control cabinet, here the components are distributed across three

separate cabinets.

Short Version:

Unwinder, Process, Transport, Rewinder

Long Version:

Unwinder, Process, Transport, Process 1, Process 2, Transport, Rewinder

The first two systems were still implemented as classically adjusted programs with optional features.

During this phase, I worked in parallel on a machine framework. The goal was to be extremely

modular and to generate the actual machine software via script.

After discussing with the customer whether we should switch to a framework-based solution, this

approach was implemented immediately.

All functions were consolidated into a single library, and individual machines were defined in XML

and generated using a (working!) Python script.

Program Excerpt

Implementation with Lasal Class 2

Old Approach

The class SwivelUnit was

created in the traditional

way, the object

instantiated, and clients

connected.

New Approach

 The class SwivelUnit

was created using the

Interfaceless Design.

Objects for hardware

and machine functions

were generated from an

XML description using

the generator.

The XML file contains

the BMK (circuit

reference) from the

schematic and is

therefore uniquely

assignable.

XML

The file contains the

BMK from the circuit

diagram and can thus be

clearly assigned.

Old Variant:

If no swivel unit was present, this had to be configured manually in the object's options.

New Variant:

If no swivel unit is needed, you simply omit the object.

Missing instances do not cause additional errors elsewhere in the program.

If hardware signals are forgotten during instantiation, accesses to them are caught, preventing

cascading errors.

Summary

The task:

High variance in functionality and hardware setup, yet a standardized program.

The solution:

Interfaceless Architecture: As few different interfaces as possible

(in this project, exactly one interface) between the functions and one to the hardware

signals.

Depending on the requirements, this can look different and is not set in stone.

The description of the specific system is now just a lightly readable XML file.

The result:

 Systems/machines can be fully customized for the customer.

 Flexible electrical planning (each system can be completely planned freely).

 Transfer of BMK + comments into the generated program.

 Master/slave operation between drives can be selected.

 Blocks can be tested independently of each other; possible dependencies can be easily

represented with stubs or mocks.

The generator:

Library

Machine "Short" Machine "Long"

Generator Machine Description "Long" (XML)
Machine Description "Short" (XML)

Link to project:

https://www.ma-dieterle.de/anlagen_openfiber

